Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mathematical Structure of Bosonic and Fermionic Jack States and Their Application in Fractional Quantum Hall Effect

Tytuł:
Mathematical Structure of Bosonic and Fermionic Jack States and Their Application in Fractional Quantum Hall Effect
Autorzy:
Kuśmierz, B.
Wu, Y.
Wójs, A.
Powiązania:
https://bibliotekanauki.pl/articles/1376066.pdf
Data publikacji:
2014-11
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
71.10.Pm
73.43.Cd
Źródło:
Acta Physica Polonica A; 2014, 126, 5; 1134-1136
0587-4246
1898-794X
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Fractional quantum Hall effect is a remarkable behaviour of correlated electrons, observed exclusively in two dimensions, at low temperatures, and in strong magnetic fields. The most prominent fractional quantum Hall state occurs at Landau level filling factor ν = 1/3 and it is described by the famous Laughlin wave function, which (apart from the trivial Gaussian factor) is an example of Jack polynomial. Fermionic Jack polynomials also describe another pair of candidate fractional quantum Hall states: Moore-Read and Read-Rezayi states, believed to form at the ν = 1/2 and 3/5 fillings of the second Landau level, respectively. Bosonic Jacks on the other hand are candidates for certain correlated states of cold atoms. We examine here a continuous family of fermionic Jack polynomials whose special case is the Laughlin state as approximate wave functions for the 1/3 fractional quantum Hall effect.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies