Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Wpływ hiperoksji i hiperbarii na ekspresję białek szoku cieplnego i aktywność syntazy tlenku azotu – przegląd badań

Tytuł:
Wpływ hiperoksji i hiperbarii na ekspresję białek szoku cieplnego i aktywność syntazy tlenku azotu – przegląd badań
The influence of hyperoxia on heat shock proteins expression and nitric oxide synthase activity – the review
Autorzy:
Szyller, J.
Kozakiewicz, M.
Siermontowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/1359730.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Medycyny i Techniki Hiperbarycznej
Tematy:
stres oksydacyjny
hiperoksja
hiperbaria
białka szoku cieplnego
syntaza tlenku azotu
oxidative stress
hyperoxia
hyperbaria
heat-shock proteins
nitric oxide synthase
Źródło:
Polish Hyperbaric Research; 2017, 1(58); 41-50
1734-7009
2084-0535
Język:
wiele języków
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Przebywanie w środowisku o zwiększonej zawartości tlenu (wyższym ciśnieniu parcjalnym tlenu, pO2) i pod zwiększonym ciśnieniem (hiperbaria) prowadzi do nasilenia stresu oksydacyjnego. Reaktywne formy tlenu (ROS) uszkadzają cząsteczki białek, kwasów nukleinowych, powodują oksydację lipidów i zaangażowane są w rozwój wielu chorób m.in. układu krążenia, chorób neurodegeneracyjnych i in. Istnieją mechanizmy ochrony przed niekorzystnymi skutkami stresu oksydacyjnego. Należą do nich układy enzymatyczne i nieenzymatyczne. Do tych ostatnich zaliczają się m.in. białka szoku cieplnego (HSP). Dokładna ich rola i mechanizm działania są intensywnie badane w ostatnich latach. Hiperoksja i hiperbaria wpływa także na ekspresję i aktywność syntazy tlenku azotu (NOS). Jej produkt – tlenek azotu (NO) może reagować z reaktywnymi formami tlenu i przyczyniać się do rozwoju stresu nitrozacyjnego. NOS występuje w postaci izoform w różnych tkankach i w różny sposób reagujących na omawiane czynniki. Autorzy dokonali krótkiego przeglądu badań określających wpływ hiperoksji i hiperbarii na ekspresję HSP i aktywność NOS.

Any stay in an environment with an increased oxygen content (a higher oxygen partial pressure, pO2) and an increased pressure (hyperbaric conditions) leads to an intensification of oxidative stress. Reactive oxygen species (ROS) damage the molecules of proteins, nucleic acids, cause lipid oxidation and are engaged in the development of numerous diseases, including diseases of the circulatory system, neurodegenerative diseases, etc. There are certain mechanisms of protection against unfavourable effects of oxidative stress. Enzymatic and non-enzymatic systems belong to them. The latter include, among others, heat shock proteins (HSP). Their precise role and mechanism of action have been a subject of intensive research conducted in recent years. Hyperoxia and hyperbaria also have an effect on the expression and activity of nitrogen oxide synthase (NOS). Its product - nitrogen oxide (NO) can react with reactive oxygen species and contribute to the development of nitrosative stress. NOS occurs as isoforms in various tissues and exhibit different reactions to the discussed factors. The authors have prepared a brief review of research determining the effect of hyperoxia and hyperbaria on HSP expression and NOS activity.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies