We consider smooth knottings of compact (not necessarily orientable) n-dimensional manifolds in $ℝ^{n+2}$ (or $S^{n+2}$), for the cases n=2 or n=3. In a previous paper we have generalized the notion of the Reidemeister moves of classical knot theory. In this paper we examine in more detail the above mentioned dimensions. Examples are given; in particular we examine projections of twist-spun knots. Knot moves are given which demonstrate the triviality of the 1-twist spun trefoil. Another application is a smooth version of a result of Homma and Nagase on a set of moves for regular homotopies of surfaces.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00