Tytuł pozycji:
Division et extension dans des classes de Carleman de fonctions holomorphes
- Tytuł:
-
Division et extension dans des classes de Carleman de fonctions holomorphes
- Autorzy:
-
Thilliez, Vincent
- Powiązania:
-
https://bibliotekanauki.pl/articles/1341930.pdf
- Data publikacji:
-
1998
- Wydawca:
-
Polska Akademia Nauk. Instytut Matematyczny PAN
- Źródło:
-
Banach Center Publications; 1998, 44, 1; 233-246
0137-6934
- Język:
-
angielski
- Prawa:
-
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
- Dostawca treści:
-
Biblioteka Nauki
-
Przejdź do źródła  Link otwiera się w nowym oknie
Let Ω be a bounded pseudoconvex domain in $ℂ^n$ with $C^1$ boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions $v_1,...,v_p$ (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class ${l!M_l}$ in $\bar Ω$ (resp. satisfies $f = v_1 f_1+... + v_p f_p$ with $f_1,...,f_p$ holomorphic in Ω and ${l!M_l}$-regular in $\bar Ω$). The essential assumption is that f and $v_1,... ,v_p$ belong to some (maybe smaller) Carleman class ${l!M^-_l}$, where the sequences $M^-$ and M are precisely related by geometric conditions on X and Ω.