Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle

Tytuł:
Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle
Autorzy:
Inoue, Tetsuo
Powiązania:
https://bibliotekanauki.pl/articles/1312191.pdf
Data publikacji:
1992
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Źródło:
Annales Polonici Mathematici; 1991-1992, 56, 2; 157-162
0066-2216
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let f(z) be a conformal mapping of an annulus A(R) = {1 < |z| < R} and let f(A(R)) be a ring domain bounded by a circle and a k-circle. If R(φ) = {w : arg w = φ}, and l(φ) - 1 is the linear measure of f(A(R)) ∩ R(φ), then we determine the sharp lower bound of $l(φ_1) + l(φ_2)$ for fixed $φ_1$ and $φ_2$ $(0 ≤ φ_1 ≤ φ_2 ≤ 2π)$.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies