Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Generowanie numerycznych modeli powierzchni oraz terenu w Tatrach na podstawie chmury punktów z lotniczego skaningu laserowego (ALS)

Tytuł:
Generowanie numerycznych modeli powierzchni oraz terenu w Tatrach na podstawie chmury punktów z lotniczego skaningu laserowego (ALS)
Generation of digital surface and terrain models of the Tatras Mountains based on airbone laser scanning (ALS) point cloud
Autorzy:
Wężyk, P
Borowiec, N.
Szombara, S.
Wańczyk, R.
Powiązania:
https://bibliotekanauki.pl/articles/131204.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
ALS
NMPT
NMT
znormalizowany NMPT
Tatry
DTM
DSM
nDSM
Tatra Mts.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18b; 651-661
2083-2214
2391-9477
Język:
polski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Celem pracy było zaprezentowanie metod zastosowanych w półautomatycznym procesie generowania numerycznych modeli bazujących na chmurze punktów zarejestrowanych technologią lotniczego skaningu laserowego (ang. Airborne Laser Scanning; ALS) w trudnych obszarach wysokogórskich Tatr. Teren badań o powierzchni około 60 km2, obejmował masyw Kasprowego Wierchu, Kuźnice oraz fragment miasta Zakopane ze stokami Gubałówki. Dane ALS pozyskano w 2007 roku w 33 pasach (RIEGL LMS-Q560), w zagęszczeniu, co najmniej 20 pkt/m2. Wpasowania połączonych skanów dokonano w oparciu o pomiary tachimetryczne powierzchni planarnych (dachy budynków) i dowiązanie przez dGPS. Błędy położenia punktów w płaszczyźnie poziomej wahały się w przedziale -0.09÷+0.28 m, a błędy wysokościowe w przedziale od -0.12÷0.14 m (HAE). Wykonawca dostarczył dane osobno z 2 skanerów, dla każdego: pierwsze i ostatnie odbicie impulsu. Ze względu na duży rozmiar plików podzielono ja na mniejsze generując 353 obszary robocze o rozmiarze 500·500 m dla każdego skanera i numeru odbicia. Przeprowadzono filtrację chmury punktów oraz ich klasyfikację do zestawów danych: „low points”, „ground", „low vegetation”, „medium vegetation”, „high vegetation” oraz „air points”. W celu wygenerowania NMPT stworzono klasę „ground_inverse" wymagającą kontroli operatora wspomagającego się ortofotomozaiką cyfrową (RGB\CIR; kamera Vexcel). Dla każdego przetwarzanego obszaru roboczego wygenerowano NMT oraz NMPT. Na podstawie zweryfikowanych modeli wygenerowano znormalizowany numeryczny model powierzchni terenu obrazujący wysokości względne obiektów występujących w obszarze opracowania (drzewa, piętro kosodrzewiny, budynki, linie energetyczne, liny wyciągów, etc). Analizy przestrzenne bazujące na wygenerowanych modelach otwierają zupełnie nowe możliwości licznym badaniom naukowym.

The work presented was aimed at constructing a semi-automatic work-flow of Digital Surface Model (DSM) and Digital Terrain Model (DTM) generation based on an ALS point cloud gathered in a very difficult mountain area. The study area located in the Polish part of the Tatras Mountains covered about 60 km2 and included the Kasprowy Wierch, Kuźnice, and downtown Zakopane with the Gubałówka. ALS data, collected in 2007, consisted of 33 scans (minimum density of 20 points/m2). To combine all the scans and match them to the coordinate system, planar surfaces (building roofs) were measured using a tachimeter and a dGPS survey. Position errors of the ALS points in the horizontal plane varied from -0.09m to +0.28m; height errors ranged from -0.12m to 0.14m (HAE). The operator delivered the data separately from 2 Riegl Q- 560 scanners, for every FE and LE. The ALS files, due to their huge size, were divided into smaller ones and generated 353 sheets (500x500 m in size ) for every scanner and number of returns combination. The point cloud was filtered and assigned to the following levels: "low points”, "ground", "low vegetation”, "medium vegetation”, "high vegetation” and "air points”. To generate a DSM, a special class called "ground_inverse" was created; it required an operator control supported by a digital orthophoto (RGB\CIR; Vexcel camera). For every sheet processed, the DTM and DSM were generated. Those verified models served as a basis for developing an nDSM model using the ER Mapper software. The nDSM shows relative heights of objects in the study area (forest stands, dwarf mountain pines, buildings, power lines, ski lifts, etc.). Development of a precise DSM and nDSM as well as analyses of the nDSM open new perspectives for numerous scientific projects.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies