Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hyperbolically convex functions

Tytuł:
Hyperbolically convex functions
Autorzy:
Ma, Wancang
Minda, David
Powiązania:
https://bibliotekanauki.pl/articles/1311659.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
hyperbolic convexity
distortion theorem
growth thoerem
linear invariance
Źródło:
Annales Polonici Mathematici; 1994-1995, 60, 1; 81-100
0066-2216
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We investigate univalent holomorphic functions f defined on the unit disk such that f() is a hyperbolically convex subset of ; there are a number of analogies with the classical theory of (euclidean) convex univalent functions. A subregion Ω of is called hyperbolically convex (relative to hyperbolic geometry on ) if for all points a,b in Ω the arc of the hyperbolic geodesic in connecting a and b (the arc of the circle joining a and b which is orthogonal to the unit circle) lies in Ω. We give several analytic characterizations of hyperbolically convex functions. These analytic results lead to a number of sharp consequences, including covering, growth and distortion theorems and the precise upper bound on |f''(0)| for normalized (f(0) = 0 and f'(0) > 0) hyperbolically convex functions. In addition, we find the radius of hyperbolic convexity for normalized univalent functions mapping into itself. Finally, we suggest an alternate definition of "hyperbolic linear invariance" for locally univalent functions f: → that parallels earlier definitions of euclidean and spherical linear invariance.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies