Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Logarithmic structure of the generalized bifurcation set

Tytuł:
Logarithmic structure of the generalized bifurcation set
Autorzy:
Janeczko, S.
Powiązania:
https://bibliotekanauki.pl/articles/1311213.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
bifurcations
singularities
logarithmic stratifications
Źródło:
Annales Polonici Mathematici; 1996, 63, 2; 187-197
0066-2216
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let $G: ℂ^{n} × ℂ^{r} → ℂ$ be a holomorphic family of functions. If $Λ ⊂ ℂ^{n} × ℂ^{r}$, $π_r: ℂ^{n} × ℂ^{r} → ℂ^{r}$ is an analytic variety then
  $Q_{Λ}(G) = {(x,u) ∈ ℂ^{n} × ℂ^{r}: G(·,u)$ has a critical point in $Λ ∩ π_{r}^{-1}(u)}
is a natural generalization of the bifurcation variety of G. We investigate the local structure of $Q_{Λ}(G)$ for locally trivial deformations of $Λ₀ = π_{r}^{-1}(0)$. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies