We consider the mixed problem for the quasilinear partial functional differential equation with unbounded delay
$D_tz(t,x) = ∑_{i=1}^n f_i(t,x,z_{(t,x)})D_{x_i}z(t,x) + h(t,x,z_{(t,x)})$,
where $z_{(t,x)} ∈ X̶_0$ is defined by $z_{(t,x)}(τ,s) = z(t+τ,x+s)$, $(τ,s) ∈ (-∞,0]×[0,r]$, and the phase space $X̶_0$ satisfies suitable axioms. Using the method of bicharacteristics and the fixed-point method we prove a theorem on the local existence and uniqueness of Carathéodory solutions of the mixed problem.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00