Sidon proved the inequality named after him in 1939. It is an upper estimate for the integral norm of a linear combination of trigonometric Dirichlet kernels expressed in terms of the coefficients. Since the estimate has many applications for instance in $L^1$ convergence problems and summation methods with respect to trigonometric series, newer and newer improvements of the original inequality has been proved by several authors. Most of them are invariant with respect to the rearrangement of the coefficients. Although the newest results are close to best possible, no nontrivial lower estimate has been given so far. The aim of this paper is to give the best rearrangement invariant function of coefficients that can be used in a Sidon type inequality. We also show that it is equivalent to an Orlicz type and a Hardy type norm. Examples of applications are also given.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00