We prove a class of uncertainty principles of the form
$∥S_{g}f∥_{1} ≤ C(∥x^{a}f∥_{p} + ∥ω^{b}f̂∥_{q})$,
where $S_{g}f$ is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00