We prove that there exist constants C>0 and 0 < λ < 1 so that for all convex bodies K in $ℝ^n$ with non-empty interior and all integers k so that 1 ≤ k ≤ λn/ln(n+1), there exists a k-dimensional affine subspace Y of $ℝ^n$ satisfying
$d(Y ∩ K, B_2^k) ≤ C(1+ √(k/ln(n/(kln(n+1))))$.
This formulation of Dvoretzky's theorem for large dimensional sections is a generalization with a new proof of the result due to Milman and Schechtman for centrally symmetric convex bodies. A sharper estimate holds for the n-dimensional simplex.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00