Let A be a C*-algebra. We prove that every absolutely summing operator from A into $ℓ_2$ factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and $T ∈ Π_1(A,ℓ_2)$ with $π_1(T) ≤ 1$, then for every ε >0, the ε-capacity of the image of the unit ball of A under T does not exceed N(ε). This answers positively a question raised by Pełczyński.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00