Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Maximal functions and smoothness spaces in $L_{p}(ℝ^{d})

Tytuł:
Maximal functions and smoothness spaces in $L_{p}(ℝ^{d})
Autorzy:
Kyriazis, G. C.
Powiązania:
https://bibliotekanauki.pl/articles/1218547.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
maximal functions
approximation by operators
wavelets
smoothness spaces
Źródło:
Studia Mathematica; 1998, 128, 3; 219-241
0039-3223
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces $C^α_p(ℝ^d)$, 0 < p≤∞, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the $C^α_p(ℝ^d)$ spaces in terms of the coefficients of wavelet decompositions.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies