Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A construction of infinite set of rational self-equivalences

Tytuł:
A construction of infinite set of rational self-equivalences
Autorzy:
Stępień, M.
Powiązania:
https://bibliotekanauki.pl/articles/121830.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie. Wydawnictwo Uczelniane
Tematy:
pierścień Witta
symbol Legendre'a
twierdzenie Dirichleta
Witt rings
Legendre symbol
Dirichlet's theorem
Źródło:
Scientific Issues of Jan Długosz University in Częstochowa. Mathematics; 2009, 14; 117-132
2450-9302
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In [5] it was shown that two number fields have isomorphic Witt rings of quadratic forms if and only if there is a Hilbert symbol equivalence between them. A Hilbert symbol equivalence between two number fields K and L is a pair of maps(t,T), where t: K /K∗2→L/L∗2 is a group isomorpism and T: ΩK→Ω L is a bijection between the sets of finite and infinite primes of K and L, respectively, such that the Hilbert symbols are preserved: for any a; b∈K=K∗2and for any P∈ΩK,(a; b)P= (t(a), t(b))T(P) A Hilbert symbol equivalence between the field Q and itself is called rational self-equivalence. In [5] the authors present a construction of equivalence of two fields starting from the so called Hilbert small equivalence of two fields. We use this idea for constructing infinite set of rational self-equivalences.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies