We give an abstract version of Sierpiński's theorem which says that the closure in the uniform convergence topology of the algebra spanned by the sums of lower and upper semicontinuous functions is the class of all Baire 1 functions. Later we show that a natural generalization of Sierpiński's result for the uniform closure of the space of all sums of A and CA functions is not true. Namely we show that the uniform closure of the space of all sums of A and CA functions is a proper subclass of the space of all functions measurable with respect to the least class containing intersections of analytic and coanalytic sets and which is closed under countable unions (A and CA functions are analogues of lower and upper semicontinuous functions, respectively, when measurability with respect to open sets is replaced by that with respect to analytic sets).
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00