Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem

Tytuł:
Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem
Autorzy:
Brzeźniak, Zdzisław
van Neerven, Jan
Powiązania:
https://bibliotekanauki.pl/articles/1205938.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Źródło:
Studia Mathematica; 2000, 143, 1; 43-74
0039-3223
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let H be a separable real Hilbert space and let E be a separable real Banach space. We develop a general theory of stochastic convolution of ℒ(H,E)-valued functions with respect to a cylindrical Wiener process ${W_{t}^{H}}_{t ∈ [0,T]}$ with Cameron-Martin space H. This theory is applied to obtain necessary and sufficient conditions for the existence of a weak solution of the stochastic abstract Cauchy problem (ACP) $dX_t = AX_tdt + BdW_t^H$ (t∈ [0,T]), $X_0 = 0$ almost surely, where A is the generator of a $C_0$-semigroup ${S(t)}_{t ≥ 0}$ of bounded linear operators on E and B ∈ ℒ(H,E) is a bounded linear operator. We further show that whenever a weak solution exists, it is unique, and given by a stochastic convolution $X_t = ∫^{t}_{0} S(t-s)BdW_{s}^{H}$.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies