SLAM stands for a simultaneous localization and mapping. It’s used in construction of autonomic robots, designed for work in topographically unknown areas or dynamically changing environment. In its simplest form it utilizes distance sensor, lidar for example, and displacement data obtained from encoders. Thanks to application of appropriate strategies of adding next scan iterations and filtration of obtained data, it allows to create accurate maps with minimal computing power required. However, usage of encoders is not always possible, as in case of boats, legged robots or drones. To solve this problem, there’s proposed an algorithm that allows for localization and mapping in described situation, with a discussion on type of processors used by program. Because of the task specifics, it’s necessary to match many obtained simultaneously measurements with created map. For this purpose, the differences between algorithm version using only CPU, by spreading the task between different processor threads, and algorithm version that utilize graphical computing acceleration, that make calculations on many parallel CUDA cores, were checked. Both implementations were tested on the corridor inside building with results in the form of charts comparing time needed for separated iterations to complete.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00