Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

SLAM algorithm without odometric sensors usage in context of different computing processor types

Tytuł:
SLAM algorithm without odometric sensors usage in context of different computing processor types
Autorzy:
Fiedeń, Mateusz
Miotk, Michał
Dąbek, Przemysław
Muraszkowski, Artur
Powiązania:
https://bibliotekanauki.pl/articles/1189909.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cyfrowe przetwarzanie obrazów
SLAM
CUDA
brak czujników odometrycznych
digital image processing
absence of odometric sensors
Źródło:
Interdisciplinary Journal of Engineering Sciences; 2019, 7, 1; 28--37
2300-5874
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
SLAM stands for a simultaneous localization and mapping. It’s used in construction of autonomic robots, designed for work in topographically unknown areas or dynamically changing environment. In its simplest form it utilizes distance sensor, lidar for example, and displacement data obtained from encoders. Thanks to application of appropriate strategies of adding next scan iterations and filtration of obtained data, it allows to create accurate maps with minimal computing power required. However, usage of encoders is not always possible, as in case of boats, legged robots or drones. To solve this problem, there’s proposed an algorithm that allows for localization and mapping in described situation, with a discussion on type of processors used by program. Because of the task specifics, it’s necessary to match many obtained simultaneously measurements with created map. For this purpose, the differences between algorithm version using only CPU, by spreading the task between different processor threads, and algorithm version that utilize graphical computing acceleration, that make calculations on many parallel CUDA cores, were checked. Both implementations were tested on the corridor inside building with results in the form of charts comparing time needed for separated iterations to complete.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies