The objective of this study was biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) using Curcuma longa aqueous extract and characterize them. Study their effect on the growth, sporulation, pathogenicity of Fusarium graminearum and some wheat plants parameters compared with standards industrials nanoparticles. C. longa aquatic extract was used to biosynthesis TiO2 NPs by two methods. At first method, TiO2 was found in both colloidal solutions (CS) and nanopawder while it found in jest nanopawder in second method. All biosynthetic nanoparticles were in nano size. It was: 91.37 nm, 76.36 nm of (CS) and nanopawder for first methods respectively while it was 92.6 nm of nanopawder in second method. All nanoparticles have good optical properties. Crystal’s shape of nanopawder were in three form: anatase, rutilr and brookite and it was anatase in colloidal solutionat first method while it was pure anatase innanopawder when at second method. The average crystallite size of was calculate by Scherer's equation, it was 43.088 nm and 22.881 nm for nanopawder and colloidal solution respectively at first method. It was 45.808 nm for nanopawder at second method. All concentrations of nanoparticles were reduced fungal and spores. These decreasing were more effective using biosynthetic compare with industrial synthetic nanoparticles. There were reductions in damping-off caused by F. graminearum by biosynthetic NBs in both varieties of plant (Al-Rasheed and Tamuze-2). These was better than the effect of industrial synthetic nanoparticles. The resistance to damping off and the growth of plant in Al-Rasheed variety was more sensitive compared with Tamuze-2 variety especially at higher concentrations. There were decrease in all plant's parameters at most concentrations of TiO2 biological synthetic compare with industrial synthetic nanoparticles in Al-Rasheed variety, while there were inductions in some plant's parameters by biosynthetic nanoparticles compared with industrial synthetic in Tamuze-2 variety. Finally, C. longa can be used to biosynthesis TiO2 NPs with good biological properties.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00