The identity of a language being spoken has been tackled over the years via statistical models on audio samples. A drawback of these approaches is the unavailability of phonetically transcribed data for all languages. This work proposes an approach based on image classification that utilized image representations of audio samples. Our model used Neural Networks and deep learning algorithms to analyse and classify three languages. The input to our network is a Spectrogram that was processed through the networks to extract local visual and temporal features for language prediction. From the model, we achieved 95.56 % accuracy on the test samples from the 3 languages.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00