Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Maxwell-Lorentz Matrix

Tytuł:
Maxwell-Lorentz Matrix
Autorzy:
Montiel-Pérez, J. Yaljá
Pendleton, J.
López-Bonilla, J.
Vidal-Beltrán, S.
Powiązania:
https://bibliotekanauki.pl/articles/1177983.pdf
Data publikacji:
2018
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Lorentz Group
Lorentz transformations
Maxwell equations
Źródło:
World Scientific News; 2018, 96; 59-82
2392-2192
Język:
angielski
Prawa:
CC BY-NC: Creative Commons Uznanie autorstwa - Użycie niekomercyjne 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Lorentz invariance of Maxwell electromagnetic equations is demonstrated in two complementary ways: first, we give a pedestrian review with three-vector equations, and we then express Maxwell equations in a four-vector matrix form (the Maxwell-Lorentz matrix) which demonstrates the intimate connection of Maxwell equations with the Lorentz group. Each Maxwell-Lorentz matrix component is the product of three matrices: a derivative matrix, a 4x4 Lorentz group generator matrix, and an electromagnetic field matrix. We obtain rotary Lorentz transformations of the electromagnetic field matrix from Lorentz equation matrices. We then transform the derivative and electromagnetic matrices and obtain an explicit matrix demonstration of Lorentz invariance of Maxwell equations. To obtain this result, we express all transformation matrices in exponential form to facilitate the application of simple Lorentz group algebra. The pedestrian approach illustrates what the Lorentz group matrix approach actually accomplishes and helps one to gain some appreciation of group theory methods.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies