The maritime shipping industry has been making significant contributions to the development of the regional and global economy. However, maritime accidents and their severe consequences have been posing an incrementing risk to the individuals and societies. It is therefore important to conduct risk analysis on such accidents to support maritime safety management. In this paper, a modified ship collision candidate detection method is proposed as a tool for collision risk analysis in ports and waterways. Time-Discrete Velocity Obstacle algorithm (TD-NLVO) is utilized to detect collision candidates based on the encounter process extracted from AIS data. Ship domain model was further integrated into the algorithm as the criteria for determination. A case study is conducted to illustrate the efficacy of the improved model, and a comparison between the existing method and actual ship trajectories are also performed. The results indicate that with the integration of ship domain, the new method can effectively detect the encounters with significant collision avoidance behaviours. The choice of criteria can have a significant influence on the results of collision candidate detection.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00