This paper presents a structural design of the hardware-efficient module for implementation of convolution neural network (CNN) basic operation with reduced implementation complexity. For this purpose we utilize some modification of the Winograd’s minimal filtering method as well as computation vectorization principles. This module calculate inner products of two consecutive segments of the original data sequence, formed by a sliding window of length 3, with the elements of a filter impulse response. The fully parallel structure of the module for calculating these two inner products, based on the implementation of a naïve method of calculation, requires 6 binary multipliers and 4 binary adders. The use of the Winograd’s minimal filtering method allows to construct a module structure that requires only 4 binary multipliers and 8 binary adders. Since a high-performance convolutional neural network can contain tens or even hundreds of such modules, such a reduction can have a significant effect.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00