The semi-smooth Newton method for solving discretized contact problems with Tresca friction in three space dimensions is analyzed. The slanting function is approximated to get symmetric inner linear systems. The primal-dual algorithm is transformed into the dual one so that the conjugate gradient method can be used. The R-linear convergence rate is proved for an inexact globally convergent variant of the method. Numerical experiments conclude the paper. The contact problems are important in many practical applications, e.g., biological processes, design of machines, transportation systems, metal forming, or medicine (bone replacements).
V práci je analyzována nehladká Newtonova metoda pro rešení diskretizovaných kontaktních úloh s Trescovým trením ve trech prostorových dimenzích. Slanting funkce je aproximována za úcelem získání symetrických vnitrních lineárních úloh. Pro použití metody sdružených gradientu je primárne-duální algoritmus preveden na duální. R-lineární rychlost konvergence je dokázána pro nepresnou globálne konvergentní variantu metody. Záverem jsou uvedeny numerické experimenty. Kontaktní úlohy mají radu významných aplikací, napr. biologické procesy, design stroju a prepravních systému, tvárení kovu nebo medicína (modelování kostních náhrad).
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00