The aim of this paper is to discuss the use of parallel computing in the supervised machine learning processes in order to reduce the computation time. This way of computing has gained popularity because sequential computing is often insufficient for large scale problems like complex simulations or real time tasks. After presenting the foundations of machine learning and neural network algorithms as well as three types of parallel models, the author briefly characterized the development of the experiments carried out and the results obtained. The experiments on image recognition, ran on five sets of empirical data, prove a significant reduction in calculation time compared to classical algorithms. At the end, possible directions of further research concerning parallel optimization of calculation time in the supervised perceptron learning processes were shortly outlined.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00