Mathematical models for option pricing often result in partial differential equations originally starting with the Black-Scholes model. In this context, recent enhancements are models driven by Levy processes, which lead to a partial differential equation with an additional integral term. If one solves the problems mentioned last numerically, this yields large linear systems of equations with dense matrices. However, by using the special structure and an iterative solver the problem can be handled efficiently. To further reduce the computational cost in the calibration phase we implement a reduced order model, like proper orthogonal decomposition (POD), which proves to be very efficient. In this paper we use a special multi-level trust region POD algorithm to calibrate the option pricing model and give numerical results supporting the gain in efficiency.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00