Let R be a parabolic subgroup in $GL_n$. It acts on its unipotent radical $R_u$ and on any unipotent normal subgroup U via conjugation. Let Λ be the path algebra $k _t$ of a directed Dynkin quiver of type with t vertices and B a subbimodule of the radical of Λ viewed as a Λ-bimodule. Each parabolic subgroup R is the group of automorphisms of an algebra Λ(d), which is Morita equivalent to Λ. The action of R on U can be described using matrices over the bimodule B. The advantage of this description is that each bimodule B gives rise to an infinite number of those actions simultaneously: for each d in $ℕ^t$ we obtain a parabolic group R(d), which is the group of invertible elements in Λ(d), together with a unipotent normal subgroup U(d) in R(d). All those bimodules B are upper triangular with respect to the natural order of Λ. Then, according to [BH2], Theorem 1.1, there exists a quasi-hereditary algebra A such that the orbits of R(d) on U(d) are in bijection to the isomorphism classes of Δ-filtered A-modules of dimension vector d. We compute the quiver and relations of the quasi-hereditary algebra A corresponding to the action of the parabolic group R(d) on U(d). Moreover, we show that the Lie algebra of R(d) can be identified with the algebra Λ(d), and the Lie algebra of U(d) is isomorphic to a bimodule B(d) over Λ(d).
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00