From the logical point of view, the most interesting among the pronouns are demonstrative pronouns (especially: this/that), indefinite pronouns (a/an), definite pronoun (the) and quantifying pronouns (every, all, some). Unlike personal pronouns (e.g. I/you/he) they are in fact functors (of the n/n category).
The differentiation between personal pronouns (n) and functor pronouns (n/n) is vital here. This differentiation does not exist in traditional grammar.
The study is limited to determining functor pronouns with the use of logical properties of quantifying expressions, which are functor pronouns themselves – all (n) and some (cr) – formally expressed in the quantifier-less calculus of names (BRN). The calculus is properly enriched with demonstrative pronouns (demonstrativa), in connection to certain studies by Toshiharu Waragai (LID). An attempt to employ this system (BRND) in the analysis of some fragments of Ockham’s Summa Logicae is shown here. The work is concluded with the analysis of a functor pronoun the only (t), being a special case of a definite pronoun, which is characterised here by means of rules. The work reveals the connection between this pronoun and the operator of definite descriptions (marked in the same way) in relation to a certain Ludwik Borkowski’s conception.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00