Celem artykułu jest zastosowanie metodologii bootstrapu do poprawy rozwiązania zadania optymalizacji portfela akcji według modelu Markowitza. Zakładając, że stopy zwrotu i macierz wariancji-kowariancji są znane, w modelu minimalizuje się ryzyko wariancyjno-kowariancyjne przy spełnieniu, m.in. warunku osiągnięcia oczekiwanej lub założonej stopy zwrotu z portfela akcji. Klasyczna metoda Markowitza i jej wersja bootstrapowa dają odmienne rezultaty. W artykule omówiono portfele uzyskane na podstawie danych empirycznych i danych w postaci prób bootstrapowych losowanych zwrotnie oraz dokonano analizy różnic między nimi. Dane empiryczne dotyczą stóp zwrotu dla akcji Giełdy Papierów Wartościowych w Warszawie (GPW). Okazuje się, że zastosowanie losowych prób bootstrapowych pozwala uzyskać portfel o mniejszym ryzyku niż w przypadku portfela otrzymanego klasyczną metodą Markowitza.
This paper presents Markowitz’s mean-variance portfolio optymalization theory with and without bootstrap simulations. It is assumed that means and covariances of the assets returns are known and the variance with respect to a fixed expected return is minimized. It is concluded that there are significant differences between portfolios with and without bootstrap method and that the resampling data leads to asset allocations that are less risky. This methodology is applied in the Warsaw Stock Exchange.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00