Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Regression function and noise variance tracking methods for data streams with concept drift

Tytuł:
Regression function and noise variance tracking methods for data streams with concept drift
Autorzy:
Jaworski, M.
Powiązania:
https://bibliotekanauki.pl/articles/329716.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
data stream
concept drift
Parzen kernel
regression function
variance estimation
strumień danych
funkcja regresji
estymacja wariancji
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 3; 559-567
1641-876X
2083-8492
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Two types of heuristic estimators based on Parzen kernels are presented. They are able to estimate the regression function in an incremental manner. The estimators apply two techniques commonly used in concept-drifting data streams, i.e., the forgetting factor and the sliding window. The methods are applicable for models in which both the function and the noise variance change over time. Although nonparametric methods based on Parzen kernels were previously successfully applied in the literature to online regression function estimation, the problem of estimating the variance of noise was generally neglected. It is sometimes of profound interest to know the variance of the signal considered, e.g., in economics, but it can also be used for determining confidence intervals in the estimation of the regression function, as well as while evaluating the goodness of fit and in controlling the amount of smoothing. The present paper addresses this issue. Specifically, variance estimators are proposed which are able to deal with concept drifting data by applying a sliding window and a forgetting factor, respectively. A number of conducted numerical experiments proved that the proposed methods perform satisfactorily well in estimating both the regression function and the variance of the noise.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies