Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Neuronowe klasyfikatory cech sygnałów w diagnostyce uszkodzeń wirnika silnika indukcyjnego

Tytuł:
Neuronowe klasyfikatory cech sygnałów w diagnostyce uszkodzeń wirnika silnika indukcyjnego
Neural classifiers of fault symptoms in induction machinery rotor fault diagnosis
Autorzy:
Sobolewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/328340.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
MCSA
klasyfikator neuronowy
diagnostyka
detekcja uszkodzeń
neural classifier
diagnostics
fault detection
Źródło:
Diagnostyka; 2005, 35; 27-30
1641-6414
2449-5220
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W artykule zostaną poruszone zagadnienia związane z diagnostyką uszkodzeń silnika indukcyjnego dokonywanej za pomocą metody MCSA (Motor Current Signature Analysis. Wiele publikacji na ten temat wskazuje na pojawianie się tzw. częstotliwości poślizgowych wokół pierwszej, piątej i siódmej harmonicznej prądu stojana dla obciążeń powyżej połowy znamionowego. W niniejszym artykule zostanie przedstawiona sieć neuronowa LVQ wykorzystywana do rozwiązania problemu klasyfikacyjnego, przetwarzająca zbiór danych otrzymanych na drodze analizy statystycznej wybranych fragmentów spektrum prądu fazowego stojana. Rozwiązanie takie pozwala zautomatyzować proces klasyfikacyjny i uniknąć konieczności wyznaczania prędkości obrotowej.

In this paper problems of fault detection of induction motor by the MCSA (Motor Current Signature Analysis) method are considered. Many of published papers point to lip frequencies that appear around the fist, fifth and seventh harmonic in stator current spectrum for more then half of nominal load. This paper presents the application of the LVQ neural network, employed to solve the classification problem based on a set of input data collected as chosen parts of current spectrum being statistically analyzed. The application helps to make the classification procedure automated and avoids necessity of rotor speed measurement.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies