Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Supervised and unsupervised learning process in damage classification of rolling element bearings

Tytuł:
Supervised and unsupervised learning process in damage classification of rolling element bearings
Nadzorowany i nienadzorowany proces uczenia w klasyfikacji uszkodzeń łożysk tocznych
Autorzy:
Strączkiewicz, M.
Czop, P.
Barszcz, T.
Powiązania:
https://bibliotekanauki.pl/articles/327924.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fault classification
pattern recognition
rolling element bearing
multiple classifiers comparison
klasyfikacja uszkodzeń
rozpoznawanie wzorców
łożysko toczne
porównanie klasyfikatorów
Źródło:
Diagnostyka; 2016, 17, 2; 71-80
1641-6414
2449-5220
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 2.0 Generic
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Damage classification plays a crucial role in the process of management in nearly every branch of industry. In fact, is becomes equally important as damage detection, since it can provide information of malfunction severity and hence lead to improvement of a production or manufacturing process. Within this paper selected supervised and unsupervised pattern recognition methods are employed for this purpose. The attention of the authors is given to assessment of selection, performance benchmarking and applicability of selected pattern recognition methods. The investigation is performed on the data collected using an experimental test grid and rolling element bearing with deteriorating condition of an outer race.

Klasyfikacja uszkodzeń odgrywa ważną rolę w procesie zarządzania w niemalże każdej gałęzi przemysłu. W rzeczywistości staje się ona równie istotna co samo wykrywanie uszkodzenia ponieważ pozwala określić stopień uszkodzenia, a co za tym idzie, poprawić efektywność zarządzania zakładem przemysłowym. W tym celu wykorzystano wybrane nadzorowane i nienadzorowane metody rozpoznawania wzorców. W artykule zwrócono uwagę na ocenę wyboru, porównanie wydajności oraz możliwości wykorzystania tych metod. Analiza przeprowadzona została na danych zgromadzonyh na eksperymentalnym stanowisku testowym, gdzie obserwowany jest stan łożyska tocznego z pogłębiającym się uszkodzeniem bieżni zewnętrznej.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies