W pracy przedstawiono podstawowe założenia metodyczne związane z budową formalnych systemów reprezentacji wiedzy. Omówiono sieci probabilistyczne, które są szczególnie przydatnym systemem reprezentacji wiedzy w przypadku, gdy trzeba w sposób jawny zakodować czynnik niepewności i rozumowania w kategoriach niedeterministycznych związków przyczynowo-skutkowych. Sprecyzowano zasady budowy modelu oraz omówiono metody wnioskowania specyficzne dla sieci bayesowskich.
The paper presents Bayesian Networks (BN) technology in the context of methodological requirements for building knowledge representation systems in the domain of agricultural engineering. BN, by their nature, are especially useful for modeling uncertain domains like agricultural production and food chains management.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00