Objectives
The nitrogen-containing xenobiotics, such as nitrates and acrylamide may potentially influence systemic redox status and contribute to the generation of oxidative stress (OS) in the human body, but there is still a lack of studies that would evaluate the various parameters assessing the oxidative-antioxidant balance. The aim of this study was to evaluate the exposure to nitrates and acrylamide derived from daily diet and to analyze the impact of these nitrate-containing xenobiotics on the parameters of systemic redox status in healthy young adults.
Material and Methods
To assess nitrate and acrylamide intake in the study population, a semi-quantitative food frequency questionnaire was used. Systemic redox status was evaluated by measurement of a panel of biochemical parameters: enzymatic (glutathione S-transferase, glutathione reductase, glutathione peroxidase [GPx]) and non-enzymatic (uric acid, bilirubin and albumin), thiol/disulphide homeostasis parameters (total thiol, native thiol, and disulfide) and oxidative/ antioxidant balance indicators (total antioxidant status, total oxidant status, OS index).
Results
The average consumption of nitrates and acrylamide in the study population was 1.24 mg/kg b.w./day and 0.23 μg/kg b.w./day, respectively, which is within the normal value range. Of 12 measured parameters, significant differences were revealed for disulfide and total thiol levels, which were increased in the subgroup with the highest daily intake of nitrates compared to the subgroup with the lowest intake; for GPx, which was highest in the subgroup of the lowest daily intake of acrylamide; and for native thiols in the subgroup with the highest daily intake.
Conclusions
The intake of nitrogen-containing xenobiotics within the range considered as normal does not markedly influence redox state parameters in healthy young adults. Some significant changes were revealed only for thiol/disulphide homeostasis parameters, which may be the first line of antioxidant defense, as well as for GPx activity. Compensative mechanisms in healthy young people are efficient enough to neutralize OS induced by slightly increased exposure to nitrogen-containing xenobiotics delivered with food.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00