Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Change Point Determination in Audio Data Using Auditory Features

Tytuł:
Change Point Determination in Audio Data Using Auditory Features
Autorzy:
Maka, T.
Powiązania:
https://bibliotekanauki.pl/articles/226762.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
audio change point detection
auditory features
gammatone filter bank
Źródło:
International Journal of Electronics and Telecommunications; 2015, 61, 2; 185-190
2300-1933
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The study is aimed to investigate the properties of auditory-based features for audio change point detection process. In the performed analysis, two popular techniques have been used: a metric-based approach and the ∆BIC scheme. The efficiency of the change point detection process depends on the type and size of the feature space. Therefore, we have compared two auditory-based feature sets (MFCC and GTEAD) in both change point detection schemes. We have proposed a new technique based on multiscale analysis to determine the content change in the audio data. The comparison of the two typical change point detection techniques with two different feature spaces has been performed on the set of acoustical scenes with single change point. As the results show, the accuracy of the detected positions depends on the feature type, feature space dimensionality, detection technique and the type of audio data. In case of the ∆BIC approach, the better accuracy has been obtained for MFCC feature space in the most cases. However, the change point detection with this feature results in a lower detection ratio in comparison to the GTEAD feature. Using the same criteria as for ∆BIC, the proposed multiscale metric-based technique has been executed. In such case, the use of the GTEAD feature space has led to better accuracy. We have shown that the proposed multiscale change point detection scheme is competitive to the ∆BIC scheme with the MFCC feature space.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies