Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A novel method for 3D measurement of RFID multi-tag network using a machine vision system

Tytuł:
A novel method for 3D measurement of RFID multi-tag network using a machine vision system
Autorzy:
Zhuang, X.
Yu, X.
Zhao, Z.
Zhang, W.
Liu, Z.
Lu, D.
Dong, D.
Powiązania:
https://bibliotekanauki.pl/articles/221058.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
3D measurement
RFID multi-tag network
dual-CCD system
neural network
machine vision
Źródło:
Metrology and Measurement Systems; 2018, 25, 3; 475-486
0860-8229
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The three-dimensional (3D) coordinate measurement of radio frequency identification (RFID) multi-tag networks is one of the important issues in the field of RFID, which affects the reading performance of RFID multi-tag networks. In this paper, a novel method for 3D coordinate measurement of RFID multi-tag networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of RFID multi-tag networks from different angles. The iterative threshold segmentation and the morphological filtering method are used to process the images. The template matching method is respectively used to determine the two-dimensional (2D) coordinate and the vertical coordinate of each tag. After that, the 3D coordinate of each tag is obtained. Finally, a back-propagation (BP) neural network is used to model the nonlinear relationship between the RFID multi-tag network and the corresponding reading distance. The BP neural network can predict the reading distances of unknown tag groups and find out the optimal distribution structure of the tag groups corresponding to the maximum reading distance. In the future work, the corresponding in-depth research on the neural network to adjust the distribution of tags will be done.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies