In the paper, we investigate queueing system M/G/∞ with non-homogeneous customers. By non-homogeneity we mean that each customer is characterized by some arbitrarily distributed random volume. The arriving customers appear according to a stationary Poisson process. Service time of a customer is proportional to his its volume. The system is unreliable, which means that all its servers can break simultaneously and then the repair period goes on for random time having an arbitrary distribution. During this period, customers present in the system and arriving to it are not served. Their service continues immediately after repair period termination. Time intervals of the system in good repair mode have an exponential distribution. For such system, we determine steady-state sojourn time and total volume of customers present in it distributions. We also estimate the loss probability for the similar system with limited total volume. An analysis of some special cases and some numerical examples are attached as well.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00