Object classification is a problem which has attracted a lot of research attention in recent years. Traditional approach to this problem is built on a shallow trainable architecture that was meant to detect handcrafted features. That approach works poorly and introduces many complications in situations where one is to work with more than a couple types of objects in an image with a large resolution. That is why in the past few years convolutional and residual neural networks have experienced a tremendous rise in popularity. In this paper, we provide a review on topics related to artificial neural networks and a brief overview of our research. Our review begins with a short introduction to the topic of computer vision. Afterwards we cover briefly the concepts of neural networks, convolutional and residual neural networks and their commonly used models. Then we provide a comparative performance analysis of the previously mentioned models in a binary and multi-label classification problem. Finally, multiple conclusions are drawn, which are to serve as guidelines for future computer vision systems implementations.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00