Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hybridisation of Mel Frequency Cepstral Coefficient and Higher Order Spectral Features for Musical Instruments Classification

Tytuł:
Hybridisation of Mel Frequency Cepstral Coefficient and Higher Order Spectral Features for Musical Instruments Classification
Autorzy:
Bhalke, D. G.
Rama Rao, C. B.
Bormane, D.
Powiązania:
https://bibliotekanauki.pl/articles/176497.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
feature extraction
MFCC
HOS
bispectrum
bicoherence
non-linearity
non-Gaussianity
CPNN
zero crossing rate (ZCR)
Źródło:
Archives of Acoustics; 2016, 41, 3; 427-436
0137-5075
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper presents the classification of musical instruments using Mel Frequency Cepstral Coefficients (MFCC) and Higher Order Spectral features. MFCC, cepstral, temporal, spectral, and timbral features have been widely used in the task of musical instrument classification. As music sound signal is generated using non-linear dynamics, non-linearity and non-Gaussianity of the musical instruments are important features which have not been considered in the past. In this paper, hybridisation of MFCC and Higher Order Spectral (HOS) based features have been used in the task of musical instrument classification. HOS-based features have been used to provide instrument specific information such as non-Gaussianity and non-linearity of the musical instruments. The extracted features have been presented to Counter Propagation Neural Network (CPNN) to identify the instruments and their family. For experimentation, isolated sounds of 19 musical instruments have been used from McGill University Master Sample (MUMS) sound database. The proposed features show the significant improvement in the classification accuracy of the system.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies