The paper presents the application of Artificial Neural Networks (ANN) in predicting sound insulation through multi-layered sandwich gypsum partition panels. The objective of the work is to develop an Artificial Neural Network (ANN) model to estimate the Rw and STC value of sandwich gypsum constructions. The experimental results reported by National Research Council, Canada for Gypsum board walls (Halliwell et al., 1998) were utilized to develop the model. A multilayer feed-forward approach comprising of 13 input parameters was developed for predicting the Rw and STC value of sandwich gypsum constructions. The Levenberg-Marquardt optimization technique has been used to update the weights in back-propagation algorithm. The presented approach could be very useful for design and optimization of acoustic performance of new sandwich partition panels providing higher sound insulation. The developed ANN model shows a prediction error of ± 3 dB or points with a confidence level higher than 95%.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00