Developing effective methods for automatic identification of noise sources is currently one of the most important tasks in long-term acoustical climate monitoring of the environment. Manual verification of recorded data, when it comes to proper determination of noise levels, is time-consuming and costly. A possible solution is to use pattern recognition techniques for acoustic signal recorded by a monitoring station. This paper presents usefulness of special directed measurement techniques, acoustic signal processing, and classification methods using artificial intelligence (the Sammon mapping) and learning systems methods (Support Vector Machines) in the recognition of corona audible noise from ultra-high voltage AC transmission lines.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00