Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Zastosowanie metody mini-modeli opartej na hipersześcianie w procesie modelowania danych wielowymiarowych

Tytuł:
Zastosowanie metody mini-modeli opartej na hipersześcianie w procesie modelowania danych wielowymiarowych
Application of mini-models method based on hypercube in the modeling process of multidimensional data
Autorzy:
Pietrzykowski, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/1367439.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Szczeciński. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego
Tematy:
mini-model
local regression
k-nearest neighbor
mathematical modeling
instance based learning
modelowania matematyczne
algorytm najbliższych sąsiadów
lokalna regresja
metody bazujące na próbkach
Źródło:
Zeszyty Naukowe. Studia Informatica; 2015, 38; 91-103
0867-1753
Język:
polski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W artykule zaprezentowano metodę samo-uczenia mini-modeli (metodę MM) opartą na hiperbryłach w przestrzeni wielowymiarowej. Jest to metoda nowa i rozwojowa, będąca w trakcie intensywnych badań. Bazuje ona na próbkach pobieranych jedynie z lokalnego otoczenia punktu zapytania, a nie z obszarów odległych od tego punktu. Grupa punktów, używana w procesie uczenia mini-modelu jest ograniczona obszarem hiperbryły. Na tak zdefiniowanym lokalnym otoczeniu punktu zapytania metoda MM w procesie uczenia oraz obliczania odpowiedzi można użyć dowolnej metody aproksymacji. W artykule przedstawiono algorytm uczenia i działania metody w przestrzeni wielowymiarowej bazujący na hipersferycznym układzie współrzędnych. Metodę przebadano na zbiorach danych wielowymiarowych, a wyniki porównano z innymi metodami bazującymi na próbkach.

The article presents self-learning method of mini-models (MM-method) based on polytopes in multidimensional space. The method is new and is an object of intensive research. MM method is the instance based learning method and uses data samples only from the local neighborhood of the query point. Group of points which are used in the model-learning process is constrained by a polytope area. The MM-method can on a defined local area use any approximation algorithm to compute mini-model answer for the query point. The article describes a learning technique based on hyper-spherical coordinate system. The method was used in the modeling task with multidimensional datasets. The results of numerical experiments were compared with other instance based methods.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies