Let J be an abelian topological semigroup and C a subset of a Banach space X. Let L(X) be the space of bounded linear operators on X and Lip(C) the space of Lipschitz functions ⨍: C → C. We exhibit a large class of semigroups J for which every weakly continuous semigroup homomorphism T: J → L(X) is necessarily strongly continuous. Similar results are obtained for weakly continuous homomorphisms T: J → Lip(C) and for strongly measurable homomorphisms T: J → L(X).
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00