Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Homology lens spaces and Dehn surgery on homology spheres

Tytuł:
Homology lens spaces and Dehn surgery on homology spheres
Autorzy:
Guilbault, Craig
Powiązania:
https://bibliotekanauki.pl/articles/1208523.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Źródło:
Fundamenta Mathematicae; 1994, 144, 3; 287-292
0016-2736
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
A homology lens space is a closed 3-manifold with ℤ-homology groups isomorphic to those of a lens space. A useful theorem found in [Fu] states that a homology lens space $M^3$ may be obtained by an (n/1)-Dehn surgery on a homology 3-sphere if and only if the linking form of $M^3$ is equivalent to (1/n). In this note we generalize this result to cover all homology lens spaces, and in the process offer an alternative proof based on classical 3-manifold techniques.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies