Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On Haar null sets

Tytuł:
On Haar null sets
Autorzy:
Solecki, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/1205504.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Źródło:
Fundamenta Mathematicae; 1996, 149, 3; 205-210
0016-2736
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We prove that in Polish, abelian, non-locally-compact groups the family of Haar null sets of Christensen does not fulfil the countable chain condition, that is, there exists an uncountable family of pairwise disjoint universally measurable sets which are not Haar null. (Dougherty, answering an old question of Christensen, showed earlier that this was the case for some Polish, abelian, non-locally-compact groups.) Thus we obtain the following characterization of locally compact, abelian groups: Let G be a Polish, abelian group. Then the σ-ideal of Haar null sets satisfies the countable chain condition iff G is locally compact. We also show that in Polish, abelian, non-locally-compact groups analytic sets cannot be approximated up to Haar null sets by Borel, or even co-analytic, sets; however, each analytic Haar null set is contained in a Borel Haar null set. Actually, we prove all the above results for a class of groups which is much wider than the class of all Polish, abelian groups, namely for Polish groups admitting a metric which is both left- and right-invariant.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies