We consider two situations which relate properties of filters with properties of the limit operators with respect to these filters. In the first one, we show that the space of sequences having limits with respect to a $Π^0_3$ filter is itself $Π^0_3$ and therefore, by a result of Dobrowolski and Marciszewski, such spaces are topologically indistinguishable. This answers a question of Dobrowolski and Marciszewski. In the second one, we characterize universally measurable filters which fulfill Fatou's lemma.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00