The paper considers the problem of practical using of theory about near-critical flows. It describes the types of immovable and movable near-critical flow phenomena and cases of these phenomena formation during different hydrotechnical constructions operating. The paper gives generalized differential equation of freesurface profile of wavelike near-critical flows. The solution of mentioned generalized differential equation is given as well. The solution of generalized differential equation takes into account possible deviating from hydrostatic pressure in initial cross-section of considered flows. If the specifity of near-critical flows, especially wavelike free-surface profile and deviation of pressure distribution in initial section of considered flows, will not be taken into account, it can put to difference between designed and real hydraulic regimens. This factor can bring to miscalculation during designing, building and exploitation of hydrotechnical constructers. All that shows the issue urgency of near-critical flows characteristics determination and modelling for practical calculations. The equations for determination main depths (maximum and second conjugated) are given. Besides, the paper gives existence conditions of different types of near-critical flows. An objective of this work is to present the comparison between theoretical and experimental data of free-surface profile of cnoidal waves. The comparison shows good convergence of results.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00