Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On quasi-p-bounded subsets

Tytuł:
On quasi-p-bounded subsets
Autorzy:
Sanchis, M.
Tamariz-Mascarúa, A.
Powiązania:
https://bibliotekanauki.pl/articles/965880.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
free ultrafilter
P-point
(quasi)-p-pseudocompact space
Rudin-Keisler pre-order
p-limit point
(quasi)-p-bounded subset
bounded subset
Źródło:
Colloquium Mathematicum; 1999, 80, 2; 175-189
0010-1354
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The notion of quasi-p-boundedness for p ∈ $ω^*$ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in $ω^*$ can be defined in terms of quasi-p-pseudocompactness. For p ∈ $ω^*$, we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × $P_{RK}(p)$ is bounded in X × $P_{RK}(p)$, if and only if $cl_{β(X × P_{RK}(p))}(B× P_{RK}(p)) = cl_{βX} B × β(ω)$, where $P_{RK}(p)$ is the set of Rudin-Keisler predecessors of p.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies