Differential evolution (DE) presents a class of evolutionary and meta-heuristic techniques
that have been applied successfully to solve many real-world problems. However, the performance
of DE is significantly influenced by its control parameters such as scaling factor
and crossover probability. This paper proposes a new adaptive DE algorithm by greedy
adjustment of the control parameters during the running of DE. The basic idea is to perform
greedy search for better parameter assignments in successive learning periods in the
whole evolutionary process. Within each learning period, the current parameter assignment
and its neighboring assignments are tested (used) in a number of times to acquire a
reliable assessment of their suitability in the stochastic environment with DE operations.
Subsequently the current assignment is updated with the best candidate identified from
the neighborhood and the search then moves on to the next learning period. This greedy
parameter adjustment method has been incorporated into basic DE, leading to a new DE
algorithm termed as Greedy Adaptive Differential Evolution (GADE). GADE has been
tested on 25 benchmark functions in comparison with five other DE variants. The results
of evaluation demonstrate that GADE is strongly competitive: it obtained the best rank
among the counterparts in terms of the summation of relative errors across the benchmark
functions with a high dimensionality.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00