Hybrydowe systemy rekomendacji łączą zalety metod stosowanych powszechnie w rekomendacji. Głównym celem tego artykułu jest przedstawienie zastosowania uczenia maszynowego do budowy hybrydowego silnika rekomendacji. Uczenie maszynowe jest poddziedziną sztucznej inteligencji, która wykazuję obiecujące rezultaty w klasyfikacji, predykcji, wykrywaniu anomalii i rekomendacji. W tym artykule zaproponowano koncepcję spersonalizowanego modelu systemu rekomendacji opartego na parametrach i planach treningowych sportowców. Badania przeprowadzono w środowisku chmurowym Microsoft Azure Machine Learning Studio na zbiorze danych wygenerowanym na podstawie danych referencyjnych.
Hybrid recommendation systems combine the advantages of commonly used methods in recommendations. This main objective of this article is to present application of machine learning to build a hybrid recommendation engine. Machine learning is subdomain of artificial intelligence that show promising results in classification, prediction, anomaly detection and recommendations. This paper proposed a personalized recommendation system model based on athletes parameters and training plans. The researches were carried out in the cloud environment Microsoft Azure Machine Learning Studio on football data set.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00